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When a temperature gradient is imposed on the free surface of a thin liquid layer, 
fluid motion can develop due to  thermocapillarity. Previous work using linear theory 
has shown that the layer can become unstable to  a pair of obliquely travelling 
hydrothermal waves. Here, we shall study the nonlinear behaviour of this system to 
determine possible equilibrium waveforms for the instability when the critical point 
from the linear theory is slightly exceeded. We find that for all Prandtl numbers and 
small Biot numbers, possible waveforms are composed of only one of the unstable 
linear waves. For small Prandtl number and larger Biot numbers, a combination of 
the two linear waves is a possible waveform. Further analysis of these equilibrium 
states shows that both exhibit the Eckhaus and Benjamin-Feir sideband instability 
and a corresponding phase instability. Thus, they become modulated on long length- 
and timescales as the system develops. 

1. Introduction 
Fluid motion in a dynamic, thermocapillary liquid layer is driven by a surface- 

tension gradient on the fluid interface. Such a gradient appears when the temperature 
varies with position on the interface since surface tension is generally a non-constant 
function of temperature. Thcrmocapillary motions are important, and sometimes 
even dominant, in the heat and mass transfer of many systems. The manufacturing 
of single crystals using the float-zone method or the Czochralski method, the weld- 
pool behaviour during laser welding, various coating techniques, flame spreading 
over liquid fuels, heat transfer by dropwise condensation, and the rupture of cooling 
films on a heated surface are all processes in which thermocapillary flows can be 
important. See Scriven & Sternling (1960) and Kenning (1968) for complete reviews 
of such systems. 

In a previous paper, Smith & Davis (1983, hereinafter referred to as SD) used a 
simple model to study the linear stability of a thermocapillary flow. Their model 
consisted of a single liquid layer bounded below by a rigid plane and above by a 
passive gas. A constant temperature gradient imposed on the interface gave rise to 
a simple velocity field in the bulk liquid through thermocapillarity. The magnitude 
of this temperature gradient was measured by a dimensionless Marangoni number. 
In  their study of the linear stability of this system, SD found a new instability which 
they called a hydrothermal wave. The characteristics of this instability, and of 
several others, were described in detail. In  addition, simple physical mechanisms for 
the instability were discussed recently by Smith (1986) and by Davis (1987). Prom 
this work, a reasonable account of the thermocapillary instabilities exhibited by this 
simple liquid-layer model has emerged. However, a prediction for the waveform of 
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the hydrothermal-wave instability is not possible because two different normal 
modes become unstable simultaneously when the critical Marangoni number of 
linear theory is attained. These modes take the form of travelling waves, one of which 
moves backward and to the right with respect to the surface flow of the basic state, 
while the other moves backward and to the left. In  order to predict the waveform of 
the instability, we must investigate the nonlinear interactions of these unstable 
linear waves. Such an analysis is the subject of the present paper. 

We shall use a weakly nonlinear analysis in this work valid for values of the 
Marangoni number that slightly exceed the critical value. Long length- and 
timescales are defined which describe the modulat>ion of the complex amplitudes of 
the two critical modes from linear theory. This modulation is due to the presence of 
a finite region of unstable linear modes which appears around each of the critical 
modes for these slightly supercritical Marangoni numbers. The governing evolution 
equations for the modal amplitudes of the right and left linear waves are derived 
using a mult'iple-scale pert'urbation method. An analysis of this type was first used 
by Benney & Newell (1967) and Benney & Roskes (1969) to study waver waves and 
by Newell & Whitehead (1969) to study Benard convection. The end result of the 
analysis in this case is a set of evolution equations which govern the behaviour of the 
modal amplitudes of both the right and the left linear waves as a function of time and 
space. In  addition, two other equations appear. One governs the pressure field 
associated with the two critical waves and the other governs a surface heat flux 
which must be imposed by the environment. 

There are two questions that we wish to answer in this work. First, what is the 
basic waveform of the nonlinear equilibrium state for this system when we slightly 
exceed the critical Marangoni number 1 Is it a pure right or left wave or is it some 
combination of both waves? This question is answered by considering a long- 
wavelength disturbance to  possible nonlinear equilibrium states of the evolution 
equations. The second question is whether or not this nonlinear equilibrium state 
exhibits the sideband instability described by Eckhaus (1965) and Benjamin & Feir 
(1967). If it does, what is the wavelength of the most unstable disturbance? 

In $2,  we define the liquid-layer model, describe the basic-state solution used by 
SD, and derive the fundamental set of nonlinear disturbance equations. The length- 
and timescales which characterize the behaviour of the system just past the critical 
point of linear theory are defined in $3, and a perturbation analysis is then used to 
derive t.he governing nonlinear evolution equations for thc modal amplitudes of the 
critical linear waves. These equations are analysed and discussed in terms of the 
linear stability of simple nonlinear equilibrium states in $4. Further discussion is 
given in $5 and our conclusions are presented in $6. 

2. Problem formulation 
The model used by SI) is shown in figure 1. It consists of a thin liquid layer of 

infinite horizontal extent, bounded below by a rigid plane a t  z = 0, and bounded 
above by a planar interface with a passive gas a t  z = d.  A Cartesian coordinate 
system is used with the origin located in the rigid plane and the z-axis directed 
normal to this plane. The liquid is Newtonian with constant viscosity p, density p,  
thermal diffusivity K ,  thermal conductivity L, and unit thermal surface conductance 
h. The surface tension u of the interface varies with the temperature T of the liquid 
according to the following approximate equation of state : 

u =  u,--y(T-T()). (8.1) 
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FIGIJRE 1. The dynamic, thermocapillary, liquid-layer model. 

Here, To is the temperature of the interface a t  x = 0, uo is the surface tension a t  this 
temperature, and y = -dcr/dT > 0 is the negative of the rate of change of surface 
tension with temperature. 

The interface between the liquid and the gas is assumed to be nondeformable, but 
capable of supporting thermocapillary stresses. This assumption is tantamount to 
considering the limit of very large surface tension (Davis & Homsy 1980). As 
discussed by SD and by Smith (1986), the mechanism for the hydrothermal-wave 
instability considered here does not depend on the deformation of the interface. 
Thus, the assumption of non-deformability does not sacrifice any of the essential 
physics of the problem, but it does lend considerable simplification to the surface 
boundary conditions. To complete the model, a constant temperature gradient 
dT/dx = -b is imposed along the interface of the layer and body forces are 
ignored. 

The governing equations are scaled by referring lengths, the velocity vector u = 
(u, v, w), pressure p ,  temperature difference T-To, time t ,  and surface tension u to 
the scales d ,  ybdlp,  yb,  bd, p / y b ,  and uo respectively. This gives rise to the following 
dimensionless groups : the Marangoni number, M = ybd2/pK, the Prandtl number, 
Pr = p / p ,  and the Biot number, Bi = hd/k .  

The scaled equations for conservation of momentum, energy, and mass are 

MPr-l(u, + ( v -  V )  v }  = - Vp + V 2 v ,  (2 .2a)  

M{T, + v-VT} = V2T, ( 2 . 2 b )  

v-v = 0. ( 2 . 2 c )  

The boundary conditions on z = 0 are no slip and no heat fiux, 

v = T, = 0,  ( 2 . 2 d ,  e )  

and the boundary conditions on z =  1 are for a non-deformable thermocapillary 
surface (see SD), 

w = O ,  u Z = - T  5, (2.2f> 9 )  

V ,  =-T,, -T, = Bi(T-T,)+Q. (2.2 h, i )  

Here, letter subscripts refer to partial differentiation, T ,  is the temperature of the 
bounding gas far from the interface, and Q is an imposed heat flux defined as positive 
when directed out of the layer. 

The basic state of interest in this work is the return-flow solution used by SD. This 
solution represents the thermocapillary flow away from the ends of a long shallow 
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slot, and it is part of an asymptotic solution for this geometry obtained by Sen & Davis 
(1982).  It is written as follows : 

= 3z2-1 2z ,  v =  w = 0, (2.3a-c) 

px = 2, T = -x+iw{&(i - z 4 ) - 3 1  -23)>, (2 .3d ,  e )  
- 

T,=-x,  Q = O .  (2.3f3 9 )  

From this basic state, we perturb the velocity, pressure, temperature, and imposed 
heat flux as 

( 0 ,  p ,  T ,  &) = (a ,  p, T ,  &)+ (u ' ,  P', T', w, (2 .4)  

and obtain the following nonlinear disturbance equations (for clarity, we have 
dropped the prime notation in these disturbance quantities) : 

M Pr-'{v, +avx + uZ we, + ( v .  V )  v }  = - V p +  V2v ,  

M{T, + uT, + Tx u +Tz w + U S  V T }  = V2T,  

(2 .5a)  

(2 .5b)  

v - v  = 0, (2.5 c )  

v = T z = O  o n z = O ,  (2.5d, e )  

u,+TX = 0, vZ+Tu = 0, (2.5f> 9) 1 o n z = i .  
w = 0, T,+B~T+Q = o,J (2.5 h, i )  

Here, el is a unit vector in the x-direction and all letter subscripts refer to partial 
differentiation. 

3. The nonlinear stability analysis 
The above system of equations (2.5) was linearized and solved in normal-mode 

form by SD. As discussed earlier, SD found a degeneracy in the eigenvalue a t  the 
critical point of the linear theory in that two travelling waves became unstable a t  the 
same time. Our purpose in this analysis is t o  investigate the nonlinear stability of the 
above system of equations when the Marangoni number is slightly larger than its 
critical value. 

Following Sani (1964) and Davis & Segel (1968) we define the solution vector 

!P = (0, p ,  qT> (3 .1)  

and write the system of disturbance equations (2.5) in matrix operator notation 
as 

LY = M N ,  (3 .2a)  

B,,Y=O o n z = O ,  

B I Y = - Q  o n z =  1. 

(3 .2b)  

( 3 . 2 ~ )  

The operators and vectors used in this system are defined in Appendix A. 

the Marangoni number with respect to its critical value M,, 
Next, we define the small parameter E as the square root of the relative change in 

(3 .3)  
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Then, long length- and timescales are defined in terms of B ,  

x, = B X ,  x, = B 2 X ,  

Yl = By, Y, = f?y, 

7, = d ,  72 = B 2 t .  

Finally, the solution is expanded as 

Y = e ! P  + € 2 Y ( 2 )  + B 3 F 3 )  + . . . , 
N= E 2 N 2 )  + B 3 N 3 '  + . . . , 
Q = B ' & ( ~ ) + B ~ & ( ~ ) + . . .  . 
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(3.4a,  b )  

(3.4c, d )  

(3.4% f f 

(3 .5a)  

(3.5b) 

(3.5c) 

With these definitions, we now use the asymptotic technique of multiple scales to 
generate a sequence of problems to be solved. Details of the operator and vector 
expansions are contained in Appendix A and the ordered boundary-value problems 
are written in Appendix B. 

The O(e) problem is the linear problem of SD. Its  normal-mode solution is 

yo) = pp + pp + yp + yw C '  (3.6) 

The term Yg) is the critical right wave with the complex amplitude A = 
A ( X , ,  X,, Y,, Y,, 71, 7,) and P:) is the critical left wave with the complex amplitude 
B = B(X,,  X,, Y,, Yz, T,, 7.J. In these solutions, k,, and k2, are the wavenumbers in 
the x- and y-directions and w, is the frequency of the oscillations. See Appendix B for 
details. 

The third term, 

(3.7a, b )  

represents the constant-pressure solution of the governing equations. It is important 
because it is modified on the long lengthscales owing to both the right and the left 
linear waves. 

The last term is only present when Bi = 0. It represents a change in the average 
temperature of the layer which can develop when both the top and the bottom are 
completely insulated. It has the form 

(3 .8a,  b )  

Associated with this last solution, we now impose a particular heating condition on 
the surface of the layer such that the average temperature perturbation of the liquid 
is zero. This is the condition 

p!) = c (x l ,  x,, y,, yz, 71 ,  7 2 )  pc ,  *C = (0, 0, I}'. 

I V T '  dV = 0,  (3 .9)  

where 

Using this condition on the solution (3 .6)  we find that C = 0. 
Note that because of this heating condition, the limit Bi + 0 does not correspond 

to the upper surface of the layer being completely insulated. There must be a non- 
zero value of the surface heat flux Q in order for the average temperature 
perturbation to be zero. 

At O(e2) ,  we have an inhomogeneous boundary-value problem that has a solution 

1" ( 0 )  dV = fi"*"' J:'" s,' ( 0 )  dz dy dx. (3.10) 
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if the forcing term is orthogonal to all adjoint solutions. Orthogonality to the adjoint 
right- and left-wave solutions leads to the following two equations : 

A T l + ~ ~ ) * V , A  = 0, B,,+ch-)-VIB = 0, (3.11a, b)  
where 

(3.11c, d )  
a a 

ax, Qy,'  
Vl = e , -+e  - chk) = cxe,+c,e2. 

When Bi = 0, orthogonality to the adjoint temperature solution yields 

Q2) = ~M,TxPx1+M,p( lAJ2+  1B1". (3.1le) 

The use of these constraint equations ensures a solution to  the O(c") problem, 
Finally, orthogonality to the adjoint pressure solution is identically satisfied. 

which we write in the simple form 

y(2) = yy + yg) + ygb + yy + yg' + yp + y(2) P + y ( 2 '  C '  (3.12) 

Here, Yy) is a right wave that is produced through the forcing of the system by the 
linear right wave, Yg) is the analogous left wave, Yg& is the response of the system 
to a pressure gradient on the long lengthscales X, and Y,, and Y? is composed of 
eight different harmonic responses of the system due to the nonlinear interaction of 
the right and left waves and the heat flux on the surface when Bi = 0. The last four 
terms in (3.12) are the homogeneous solutions of the system. They have the same 
form as those of the linear problem given by (3.6), but with the amplitudes A(2) ,  
B('), P2)  and C(2) respectively. 

At O(e3) ,  orthogonality of the forcing term to the adjoint right- and left-wave 
solutions results in the evolution equations : 

A?) + c(+) .V A(,)  = h(+)(A, B) ,  (3.13a) 

B$2) + &) . V B(2) = h(-)(A, B) .  (3.136) 

To ensure uniformity in time for our approximation, the second-order amplitudes 
A(') and R(') must not evolve on a faster timescale than the first-order amplitudes A 
and B. Therefore, h(+) = 0 and h(-) = 0. These conditions are equivalent to the two 
evolution equations : 

1 g 1  

l g l  

AT% + ch+'-V, A = X(+'A + CA +A[c,,(AJ2 + C ~ ~ J R ) ~ ]  + Ac:).V, P ,  

BT2+ c:-)*V2 B = X(-)B + cB+ R[c,,(B(' + c ~ ~ ( A ( ~ ]  + RcL-'-V, P.  

(3.14a) 

(3.14b) 

in which 

A a 2  a 2  A a a 
I-ax; a ~ ;  ax2 ar, 

V2 --+--, V, = e l - -+ez - ,  

( 3 . 1 4 ~ )  

(3.14d, e )  

Orthogonality to the adjoint pressure solution results in the equation 
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Bi = 0 

Pr 0.001 0.01 0.1 1 .o 10.0 02 

k,, 0.017 0.055 0.215 1.052 2.394 2.446 
k,, 0.076 0.236 0.632 1.498 0.922 0.335 
gc 0.005731 0.01776 0.04629 0.1048 0.1534 0.1537 
M ,  1.9615 6.2917 22.365 116.02 273.74 398.47 

Bi = 1.0 

Pr 0.001 0.01 0.1 1 .o 10.0 co 

k,, 0.060 0.169 0.312 1.152 2.371 2.413 
k,, 1.284 1.134 1.029 1.622 0.981 0.502 
cc 0.005662 0.01754 0.04769 0,1028 0.1506 0.1509 
M ,  7.0699 19.265 39.745 130.13 286.25 419.43 

TABLE 1.  Critical values of the wavenumber, frequency, and the Marangoni number for the 
linear theory of SD. 

Finally, orthogonality to  the adjoint temperature solution determines &(3). Since we 
are only interested in the behaviour of the leading-order terms, we shall omit the 
evaluation of this condition. 

The evolution equations (3.11) and (3.14) are the final set of six equations which 
govern the behaviour of the complex modal amplitudes of the right and left linear 
waves and the amplitudes of the associated pressure field and the surface heat-flux 
as the system is driven just above the critical point of the linear theory. 

3.1. CoefJicient evaluation 
The evolution equations derived above are partial differential equations with 
constant coefficients. All of these coefficients are complex except for cL*), c:,” and ,u 
which are real. Each coefficient is evaluated by implementing the appropriate 
orthogonality conditions numerically. We used the program SUPORT written by Scott 
& Watts (1975, 1977) as our basic integrating routine for the solution of the required 
boundary-value problems. Briefly, this code uses a variable-step-size integrator, a 
shooting method, the technique of superposition, and orthonormalization. Additional 
code using a secant method was written by the author in order to iterate on the 
eigenvalue of the O ( E )  system. 

The integrals in the orthogonality conditions were done using a Simpson’s 
integration routine. It was found that 101 points in the eigenfunctions were enough 
to obtain sufficient accuracy in this integration. 

The coefficients of the evolution equations were calculated for twelve different 
parameter sets. These covered a complete range of Prandtl numbers and two 
different Biot numbers. The critical values of the wavenumber vector, frequency, 
and the Marangoni number are shown in table 1. Note that these computations 
supplement the linear stability results of SD in two ways. First, the calculations for 
Bi = 1 were not included in that work. Second, the above values for the critical 
wavenumbers are accurate to three decimal places. This kind of accuracy was 
required in order to obtain sufficient accuracy in the coefficients of the evolution 
equations. Representative values for the coefficients of the evolution equations (3.1 1 )  
and (3.14) are shown in table 2 ( a  and b) .  

The linear theory of SD expressed in the O(e)  problem can be used to calculate the 
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(a )  Bi = 0 

0.01 1 .o m 

(0.4037 x 
(-0.6279 x IW', -0.2625 x 

(0.1745, -0.6503 x lo-') 

(0.5139 x lo-', 0.6403 x lo-') 

0.8082 x lo-') (0.2454 x lo-', -0.2238 x 
(-0.6376 x lo-', -0 1435 x 

(0.3203 x lo-', -0.3344 x lo-') 

(0.1485 x lo-', -0 8636 x lo-') 

(-0.2000 x lo-', 0.1400 x lW4) 
(-0.6500 x lo-', 0.5230 x 

(0.1961 x lo-', 0.2520 x lo-') 

(0.5743 x 
(-0.2275 x lo-', 0.8538 x lo-') (-0.2657 x lo-', 0.6335 x lo-') (-0.2198 x lo-', 0.5412 x lo-') 

-0.9486 x LO-') 
(0.7879 x lo-*, -0.5015 x lo-') (0.6499 x lo-', -0.2288 x lo-') (0.6476 x lo-', -0.4519 x lo-') 

(-0.4171 x 0.1153 x lo-') (-0.2112, 0.2539) (-0.2549 x lo", -0 .2196~ 10") 
(-0.1205 x lo-', -0.6626 x (-0.491 1 x lo", -0.4242 x 10") 
(-0.2673 x lo-', 0.1426 x lo-') (-0.2135, 0.1672 x 10") 

(-0.2462, 0.3828) 
(-0.1661, 0.6747) 

(0.1475 x lo-', 0.9078 x lo-') (-0.3063 x lo-', 0.5985) ( -0 .3886~  0.1349) 
-0.3087 x lo-' -0.1798 -0.2410 x lo-' 

0.3088 x lo-' 0.1798 0.5495 x lo-' 
0.3754 x 1 0 - 2  -0.4816 x lo-' 0 

(6 )  Bi = 1.0 

0.01 

(0.3292 x lo-', -0.3545 x 
(-0.7355 x lo-', -0.1676 x 

(0.2581, -0,1756) 
(-0.4376 x lo-', 0.3045 x lo-') 

(0.8322 x lo-', -0.4173 x lo-') 
(-0.4410 x lo-', 0.1646) 
(-0.3439 x lo-', -0.8526 x lo-') 

(0.4524 x LO-', 0.4199 x lo-') 

(-0.7515 x lo-', 0.5736 x lo-') 
(0.7394 x lV3, 0.4438) 

0.7995 
0.2875 x lo-'' 

- 

1 .o co 

(0.2241 x lo-', 0 .2433~  
-0.5320 x lo-', -0.6689 x 

(0.3267 x lo-', -0.2467 x lo-') 

( -0 .1808~  lo-', -0.1452 x lo-') 
(-0.9499 x lo-', -0.1086 x 

(0.2048 x lo-', 0.2552 x LO-') 
-0.2443 x lo-', 0.5326 x lo-') (-0.3676 x lo-', 0.7521 x lo-') 

(0.1436 X lo-', -0.7511 X lo-') 
(0.7022 x LO-', -0.3006 x lo-') 

(0.1296 x lo-', -0.8943 x lo-') 
(0.6313 x lo-', -0.4669 x lo-') 

(-0.2744 x lo'', -0.2272 x 10") 
(-0.5083 x lo'', -0.4198 x 10+') 

-0.2412, 0.3160) 
-0.3121, 0.5868) 
-0.1418, 0.7206) (-0.2191, 0 . 1 6 4 4 ~  10") 
-0.2985 x lo-', 0.6426) (0.8297 x 0.2026) 

0.2349 
-0.6568 x lo-' 

0.1694 x 
0.0000 

TABLE 2. The coefficients for the  evolution equations (3.11) and (3.14) for ( a )  Bi = 0, and ( b )  Bi 
= 1.0. 

neutral surface and the associated frequency surface as functions of the wavc- 
numbers. It can be shown that the coefficients of the linear terms in the evolution 
equations (3.11) and (3.14) are related to the local geometry of these surfaces a t  the 
critical point. These relations, given in Appendix C, provide an independent check on 
the coefficients of the linear terms of the evolution equations. Using a central- 
difference approximation to calculate the surface geometry from the linear problem 
at the critical point, we find that the coefficients are accurate to within three to four 
significant figures. 

4. Linear stability of the evolution equations 
Rather than integrating the evolution equations derived in the previous section for 

some given initial conditions, we shall now investigate the linear stability of possible 
equilibrium states of this set of equations. The results of this analysis will answer thc 
questions posed in the introduction. 

First, a few simplifications are in order. Since Q C 2 )  only appears in (3.11 e ) ,  we shall 
ignore i t  in the subsequent analysis. Also, the linear evolution equations ( 3 . 1 1 ~ 4  b )  
and the similar first derivative terms in (3.14a, b )  represent a wave motion in the 
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modal amplitudes of the right and left linear waves with the respective group 
velocities cp) and ck-). As long as these amplitudes are dccoupled in the evolution 
equations, we may redefine our space variables so that we move at  the group velocity 
of each particular motion. Thus, for the right wave, we have 

and for the left wave, we have 

We shall note when this decoupling occurs in the analysis and we shall make a special 
transformation when it does not. 

After this change in variables, the two modal amplitudes become independent of 
the timescalc 71. Thus, thc system evolves on the timescale T~ described by system 
(3.14). This is written in terms of our new variables as follows: 

Here, 

(4.3d) 

Our analysis of system (4.3) proceeds by first finding simple equilibrium states and 
then performing a straightforward linear stability analysis about these states. 

4.1. The null state 
The first solution that we shall examine is the null state defined as 

A ,  = B, =Po = 0. (4.4) 

Perturbing about this state, we develop the following set of linear disturbance 
equations : 

A;, = L'+'A'+cA', R' 72 = L'-'B'+cB', 0 = 5VZP'. (4.5 a-c) 

The amplitudes of the perturbations A', B' and P have all decoupled in this set of 
equations. Thus, we can consider each disturbance separately and make the 
appropriate change in reference frame. Also, given the symmetry between A' and B', 
it  is sufficient to consider only the A'-equation in order to calculate the stability of 
the null state. 

The solution of the disturbance equation (4.5a) uses normal modes in the form 

A' = d E , ,  E,  = e ~ p ( i ( k * X ) + h 7 ~ ) .  (4.6a, b )  

Here k = (kl ,  k , )  is the disturbance wavenumber vector and h is a complex number 
composed of the growth rate A, and the frequency hi of the disturbance. The 
subscripts r and i refer to the real and imaginary parts respectively. We find that 

h = L p + c .  (4.7) 
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The symbol Lp)  is defined as follows. Given any vector a = (al, a2), then 

= - c x x a ~ ~ c z y a l a , - c y y a ~ .  (4.8) 

This notation is used extensively in the following analysis. 
One can show that A, = Lg) + e, = 0 defines an ellipse which is the intersection of 

the plane M = M,( 1 +c2) and the neutral surface for the right wave of the linear 
theory of SD. Thus, for A, > 0 (< 0) we are above (below) the neutral surface and the 
null state is unstable (stable). 

4.2. The pure wave 
In  the next solution one of the amplitudes, A or B, is constant and the other is zero. 
This corresponds to either a pure right or left wave from the linear theory of SD and 
we shall refer to it as the pure-wave state. Owing to the symmetry of the problem, 
we can obtain the same information by considering either a pure-A or a pure-B 
solution. Thus, we shall ignore the pure-B solution. 

The pure-wave state is given as 

A, = do EKR,  B, = 0, Po = 0, 

where do is a complex constant defined as 

and 

(4.9a-c) 

(4.9d) 

(4.9e) 

(4 .9f)  

This state represents a uniform wave with a change in frequency of uR and a change 
in wavenumber of K~ with respect to the critical mode of linear theory. Since 1d012 
must be positive and our calculations show that c,,, < 0 for all the parameter sets 
considered, we have the relationship L:’,,+c, > 0. This limits the values of xR to 
those vectors that lie inside the ellipse defined earlier, i.e. above the neutral surface 
from the linear theory. 

We now perturb this equilibrium state, 

A=A,+A‘, B = B ,  P = P ,  (4.10 a-c) 

and obtain the following lin,eurized disturbance equations : 

A:, = L(+)A’ + cA’ + c,, {A: A’* + 21d012A’} + A, c:) * VP‘, 

R:, = L‘-)B’ + cB + C ~ ~ J ~ , ~ ~ B ’ ,  
0 = gvzP’ + c g  . V(A, A’* + A o* A’). 

( 4 . 1 1 ~ )  

(4.11 b )  

( 4 . 1 1 ~ )  

The asterisk refers to the complex conjugate. 

Using the normal modes as defined in ( 4 . 6 b ) ,  we let 
The %equation has decoupled from this system and so we solve it separately. 

B = 9mk, (4.12) 

and obtain A = LL-) + c + C b b l d O 1 2 .  (4.13) 

The growth rate for this B’-disturbance is 

A, = Lk;) + c, + I d , I Z  Cbbr. (4.14) 
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FIGURE 2. The elliptical region of possible pure-wave equilibrium states plotted in the K,- 
wavenumber space. The subregions marked with a U (an S) are unstable (stable) to a disturbance 
of the opposite kind. ( a )  Pr = 0.01 and Bi = 0, ( b )  Pr = 0.01 and Bi = 1, (c) Pr = 1.0 and Bi = 0, 
( d )  Pr = 1.0 and Bi = 1 ,  ( e )  Pr = co and Bi = 0, and ( f )  Pr = m and Bi = 1 .  
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The term Li;) is non-positive and its largest value for any wavenumber vector k is 
0. Thus, when we consider the most dangerous B-disturbance, we will have 
instability if 

(4.15) 

Since ebb, is negative for all parameter sets calculated and with IdJ2 defined in (4.9d), 
this relationship describes an elliptic annular region bounded on the outside by the 
ellipse defining the region of possible pure-A equilibrium states. Representative plots 
of this region for several parameter sets are shown in figure 2 (a-f ). For Bi = 0, there 
is always a region where the pure-A wave is stable to a B-disturbance. However, for 
Bi = 1 and Pr = 0.001 or Pr = 0.01, the B-disturbance always grows. 

The remaining equations for A’ and P can be solved using the following normal- 
mode forms: 

A’ = (~‘+’E,+U‘- )E,*)E K R ’  P‘ =p,E,+pgE,*, (4.16u, 6) 

where E ,  is defined in (4.66) and EKR is defined in (4.9e). After some algebraic 
manipulations, we obtain the determinant for the eigenvalues 

(4.17 u) 

(4.17b) 

( 4 . 1 7 ~ )  

To determine the instability of any particular equilibrium state to an A’- 
disturbance, we must determine if A, calculated from the determinant ( 4 . 1 7 ~ )  is 
positive for any value of k .  One particular disturbance of interest is k = 0, the long- 
wave approximation. Evaluating the determinant ( 4 . 1 7 ~ )  in this limit we obtain the 
characeeristic equation 

(4.18) 

The first root, A = 0, represents a neutrally stable phase change of the pure-wave 
equilibrium state. The other, h = 21d012fa+,, represents an amplitude perturbation 
which is unstable for any pure-wave equilibrium state if fa+, > 0. The value of fa+, 

depends on the direction with which we approach the limiting value k = 0 as shown 
in (4 .17~) .  The largest value for any direction can be shown to be 

fa+, = cam, + 3lcE)l Ic&)+dlsin2 (9), (4.19) 

where 6 is the angle between the vectors cg)  and c&). 
With this result, we test all of the parameter sets used in this study and find that 

the amplitude mode is always stable. Thus, there is the possibility of what Kuramoto 
(1984) calls a phase instability in this system if the zero root becomes positive for 
non-zero wavenumbers. To determine this, we could find the first-order correction to 
the zero eigenvalue for k+O and check its sign. Rather than settle for this limited 
domain of applicability, we instead calculate A, directly from the determinant 
(4.17a) for each possible equilibrium wavenumber vector IC, and see if i t  is positive 
for any value of the perturbation wavenumber vector k .  This was done with a simple 
algorithm in which the values of K, were chosen on an ( l l p t ,  6”) polar mesh 
superimposed on the elliptical region of possible values. For each case, a perturbation 
was found which made A, > 0. For illustration, we let xR = 0 and show the regions of 
instability for which A, > 0 in figure 3(u-f ) .  The neutral boundary of each region, 
defined by A, = 0, is the outermost curve. It intersects the origin, indicating that we 
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FIGURE 3. The region of sideband instability for a pure wave with K, = 0 plotted in the k- 
disturbance-wavenumber space. ( a )  P r  = 0.01 and Bi = 0, ( b )  Pr = 0.01 and Bi = 1, (c) Pr = 1.0 
and Bi = 0, (d )  Pr = 1.0 and Bi = 1, ( e )  Pr = co and Bi = 0, and ( f )  Pr = co and Bi = 1. 
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Bi = 0 
- ~- - -~ - 

Pr 0.001 0.01 0 . 1  I .o 10.0 co 

k, 0.00276 0.0140 0.0922 0.326 -0.105 0.106 
k,  0.1 1 3  0.3 15 0.521 0.723 1.459 2.356 
Ar 0.165 x lo-, 0 362 x lo-’ 0.166 x 0.569 x 0.393 x lo-’ 0.177 x lo-’ 

1% = 1.0 
~~ 

Pr  0.001 0.01 0.1 1 .o 10.0 02 

k ,  0.128 0.240 0.749 0.505 1.157 2.207 
A, 0.182 x 10-’ 0.189 x lo-’ 0.174 x lo-, 0.108 x 0.154 x lo-’ 0.124 x lo-’ 

TABLE 3. The maximum value of the growth rate and the associated value of the wavenumber 
for the pure nave with K~ = 0. 

k, 0.138 0.301 0.107 0.223 -0.0848 0.122 

have a phase instability near this point in which the disturbance primarily affects the 
phase of the pure wave. In  table 3, we detail the maximum value of A, and the 
corresponding value of k for each parameter set. These values indicate that the most 
dangerous disturbance does not occur a t  small Ikl. The associated eigenfunctions also 
show that the disturbance affects both the amplitude and the phase of the pure wave. 
This type of an instability, first studied by Eckhaus (1965) and Benjamin & Feir 
(1967), is known as a sideband instability after the form of the disturbance (4.16) 
used in the analysis. 

4.3. The mixed wave 

The last group of equilibrium solutions that we shall consider is the mixed-wave 
state. Here, both waves are present with the forms 

where 

(4.20d) 

(4.20e) 
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These equations have solutions of the form 

A’ = (a(+)E, +a(-’Ez) EKR,  

B’ = (b‘+’E, + b‘-’E,*) EKL,  

P‘ = p‘+’E, +p‘-’E,*, 

(4.22a) 

(4.22b) 

(4.22 c) 
where now k = ( k ,  0). 

This two-dimensional disturbance also allows us t o  make a consistent trans- 
formation to a reference frame that moves with the mixed disturbance a t  the 
velocity cXe,. The analysis proceeds in the usual fashion and results in the following 
characteristic equation for h 1 

f R +  + IJ40lZfa+ - A  J i G f a +  B:fb+ gOfb+ 

J4*f :+ f R -  * + wOl2f:+ - do* B t f  $+ d: Bof :+ 
ao*fb- 9 0  d o f b -  fL+ + IBO12fa- - g x -  

3q d: f b*- g’o* &of b*- go“* ft fE + l g o 1 2 f  ,*- - 

O =  

( 4 . 2 3 ~ )  

fR* = LG)+d,k- LG)’d, fL+ = L:i)+k-L:i)> (4.23 b ,  c )  

( 4 . 2 3 d )  

(4.23e) 

With k = ( k ,  0) we have the simplification 

f a _ +  = f a  = 3cpz crpx, f b +  = f b  = ‘bb-  3cpx ‘rpz. (4.24a, 6) 

Note that one can show that the eigenvalues h computed from this determinant are 
independent of the phase of do and go. Thus, we can evaluate the determinant by 
letting do and go be real. 

Just as in the pure-wave case, we shall first investigate the long-wave disturbance. 
Setting k = 0 in the determinant (4.23a), we obtain the characteristic equation 

h2(h2+ph+q) = 0, (4.25a) 

P = -2(l.4,IZ + 1 ~ 0 l 2 ) f a , ,  (4.256) 

q = ~ l ~ 0 t 2 1 ~ 0 1 “ ~ i , - f ~ ~ ~ .  ( 4 . 2 5 ~ )  

Here, we have two zero roots corresponding to a neutrally stable phase disturbance 
for each of the components of the mixed wave, A ,  and Bo. A simple analysis shows 
that  A, > 0 if f a ,  > 0, or iff,, 6 0 andfir-$2,r < 0. Note that these relations are valid 
for every possible mixed-wave equilibrium state. 

For the twelve parameter sets we have considered, we find that the mixed wave 
has an amplitude instability for each one except when Bi = 1 and Pr = 0.001 or 
Pr = 0.01. The two stable cases correspond to the same two cases in which a pure 
wave is unstable to a disturbance of the opposite kind, i.e. a pure right wave being 
unstable to  a left-travelling disturbance. This suggests that  the mixed-wave 
equilibrium state is the preferred waveform for these two parameter sets. 

For the two cases in which the mixed wave is stable to an amplitude disturbance, 
we have the possibility of a sideband instability for non-zero values of k .  To 
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FIQURE 4. Curves of the growth rate of the sideband instability versus the disturbance wavenumber 
for a mixed wave with K~ = K, = 0. (a) Bi = 0, ( b )  Bi = 1 ,  and (e) Bi = 1 .  Curve A,  Pr = 0.001 ; B, 
P r  = 0.01; C, Pr = 0.1; D, Pr = 1.0; E, Pr = 10.0; and F, Pr = CO. 

Bi = 0 

Pr 0.001 0.01 0.1 1 .o 10.0 00 

k O  0 0 0.394 0.340 0.209 
A, 0.277 x 0.766 x 0.1 10 x lo-' 0.137 x lo-' 0.395 x lo-' 0.411 x lo-' 

Bi = 1.0 

Pr 0.001 0.01 0.1 1 .o 10.0 00 

k 0.0499 0.135 0 0.494 0.275 0.0957 
A, 0.213 x 0.275 x 0.150 x lo-' 0.225 x lo-' 0.368 x lo-' 0.377 x lo-' 

TABLE 4. The maximum value of the growth rate and the associated value of the wavenumber 
for the mixed wave with K, = K, = 0 .  

determine this, we must test whether A,, calculated from the determinant (4.23a) for 
all possible equilibrium wavevector pairs K~ and K ~ ,  is positive for any non-zero 
value of k .  Here, the values of K~ and K~ were chosen on a (5pt, loo) polar mesh 
superimposed on each of the elliptic regions of possible values for these wavenumbers. 
Again, we find that there is always a growing disturbance for any of the chosen 
equilibrium states. To illustrate this, we let I C ~  = K~ = 0 and plot the curves of A, 
versus k in figure 4 (a-c). Curves A-F of figure 4 ( a )  and curves G F  of figure 4 ( c )  show 
that A, > 0 for k = 0 as shown earlier. I n  curves A and B of figure 4(b ) ,  we see that 
A, = 0 at k = 0 and so the instability is of the phase type for small values of k .  The 
maximum value of A, and the corresponding value of k are shown in table 4. 



408 M .  K .  Smith 

5. Discussion 
We have followed Benney & Newell (1967), Benney & Roskes (1969), and Newell 

& Whitehead (1969) in using the method of multiple scales to derive the evolution 
equations for the supercritical behaviour of the thermocapillary liquid-layer model. 
These equations include an explicit coupling to a pressure mode that was also 
recognized by Davey, Hocking & Stewartson (1974) for plane Poiscuille flow and by 
Hall (1984) for circular Couette flow. An immediate result of this pressure mode is the 
extra equation (3.14g).  This equation is a generalized version of the one that appears 
in the work of Davey ~t d. (1974) because of the presence of the Y,-derivatives on the 
wave amplitudes. These terms exist because the fundamental critical mode of the 
linear theory is three-dimensional. Thus, the system of evolution equations (3.11) 
and (3.14) is a further generalization of the Ginzburg-Landau equation to systems 
that exhibit a three-dimensional linear instability. 

Physically, the pressure equation (3.149) is a mass conservation law. The nonlinear 
interaction of the linear right wave with itself produces a mean streaming flow in the 
2- and y-directions of magnitude ( A ( 2 .  There is a similar flow of magnitude lBI2 
associated with linear left wave. When them mean streaming flows vary in 
magnitude over the long lengthscales used in this study, the system must develop an 
additional flow in order to maintain m y s  conservation This additional flow is driven 
by a long-range pressure gradient V I P  which develops in the layer. Equation 
(3.14 g) is the mathematical expression of mass conservation between this pressure- 
driven flow and the nonlinear strcaming flows. The long-range pressure gradient is 
analogous to the basic-state pressure gradient that is set up by the slot ends in order 
to cnsure that the net mass flux of the basic-statc velocity profile is zero. 

In  a similar manner, the heat flux condition (3.11 e )  represents an energy balance 
in the layer on the long lengthscale. The three terms on the right-hand side of this 
equation are the heat fluxes duc to the mean streaming flows produced by the long- 
range pressure gradient and the nonlinear self-interactions of the linear right and left 
waves respectively. To balance these fluxes when Bi =+ 0 a heat flux into the top of the 
layer is produced by the system. When Bi = 0, the system cannot produce a flux and 
we must impose it from the outside. Thus, we do not really have an insulated top 
surface in this limit. In imposing this flux Q ,  we essentially impose the condition that 
the average temperature perturbation in the layer is zero. 

If we set Q = 0. the limit Bi + 0 corresponds exactly to a completely insulated top 
surface. The energy balance in the layer will then be maintained if we let the average 
temperature in the layer evolve with the instability. The heat flux equation (3.11 e )  
now bccomcs an evolution equation for tht. amplitude of the temperature 
eigcnfunction G which was  defined in equation ( 3 . 8 ~ ) .  The temperature also couples 
with the cvolution equations (3.14a, h )  for the wave amplitudes. This more 
complicated set of equations is written in Appendix L). The stability behaviour of 
equilibrium solutions governed by this set of equations will be examined in a future 
publication. 

The stability analysis presented in the previous section follows the work of Stuart 
& DiPrima (1978), who considered only two-dimensional perturbations to the 
Ginzburg-Landau equation, and the work of Holmes (1985), who generalized the 
previous analysis to three-dimensional disturbances and included the coupling to the 
pressure mode. These previous analyses were able to obtain some explicit inequalities 
for instability based on locating the extremum of the characteristic equation. 
Finding such inequalities is probably hopeless in this study because of the complexity 
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of the characteristic equations which we have expressed as the determinants ( 4 . 1 7 ~ )  
and (4.23 a) .  Thus, we determine instability by the straightforward method of 
maximizing the growth rate A, for each possible equilibrium state with respect to all 
possible disturbance wavenumbers, and then determining if A, > 0. 

Note that our results show singular behaviour in the limit of k + 0. This is signalled 
by the disappearance of the term V2P‘ in (4.11~) and (4 .21~)  in this limit. Thus, the 
pressure mode must be taken into account even in the study of uniform disturbances 
to  an equilibrium solution. Furthermore, (4.17 c )  shows that the value of fa+ depends 
on which direction the small-k limit is taken, This type of behaviour is also seen in 
the work of Holmes (1985). 

The results of the stability analysis of $4 must be carefully considered in the light, 
of the types of instabilities that  were predicted. Our first result concerns ‘amplitude’ 
instability which is described in the limit of k+O. We find that a subset of the 
possible pure-wave equilibrium states is ‘amplitude’ stable for all of the parameter 
sets considered here, except for Bi = 1 and Pr = 0.001 or Pr = 0.01. This result is 
shown in figure 2(a-f). To explain these figures, consider any possible pure-A 
equilibrium state. The nonlinear interactions of the pure-A wave with a 3- 
disturbance causes a stabilization of the disturbance if the amplitude of the pure-A 
wave is large enough. The amplitude is highest a t  the centre of the elliptical region 
of possible equilibrium states and decreases toward the boundary as shown in 
equation (4.9d).  Thus, near the boundary the amplitude of the pure-A wave is not 
large enough to effect the stabilization and the B-disturbance grows in amplitude. 
Near the centre of the ellipse, the stabilization does occur and the pure-A wave is 
‘amplitude’ stable. For Bi = 1 and Pr = 0.001 or Pr = 0.01, the interaction 
coefficient cbb is not large enough to cause the stabilization of the B-disturbance even 
for the largest pure-A amplitude. Thus, the B-disturbance always grows. 

We have also seen that all possible mixed-wave-equilibrium states have an 
‘amplitude ’ instability for all of the parameter sets considered here, except when 
Bi = 1 and Pr = 0.001 or Pr = 0.01. Examination of the mixed-wave eigenfunction 
for these unstable modes reveals that the A’-part and the B-par t  have opposite 
signs. This says that one of the parts will increase and the other will decrease 
depending on which one is larger initially. Such behaviour destroys the mixed 
character of the mixed-wave equilibrium state. This result indicates that for the ten 
parameter sets that predict pure-wave ‘ amplitude ’ stability and mixed-wave 
‘amplitude’ instability, the system should develop into some form of a pure wave. 
Once a pure wave has formed, any perturbation to  it that is of the opposite type will 
decay. 

Likewise, when Bi = 1 and Pr =0.001 or Pr = 0.01 all of the mixed-wave 
equilibrium states exhibit ‘amplitude ’ stability and the pure-wave equilibrium 
states exhibit ‘amplitude ’ instability. Thus, we expect the system to develop into 
some form of a mixed wave. 

For the specific equilibrium states studied in this work with xR = rcL = 0, we find 
what Kuramoto (1984) calls a phase instability. This instability corresponds to that 
eigenvalue which approaches zero as the magnitude of the disturbance wavenumber 
becomes small. I n  this limit, the system of evolution equations (3.14) is invariant to 
a change in the phase of the solution because the nonlinear terms in the system are 
actually linear in the phase of A and B. Thus, a constant-phase disturbance is 
neutrally stable. Near this limit point, one would expect the disturbance to mostly 
affect the phase of the equilibrium state. As the wavenumber increases, however, this 
distinction should disappear. 
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For all possible equilibrium states we found an instability whose most dangerous 
disturbance did not generally occur at k = 0 .  The form of t,he disturbances used in 
the analysis shows that we actually have another case of the Eckhaus and 
Benjamin-Feir sideband instability. As described clearly by Stuart & DiPrima 
(1978), the mechanism for this instability is essentially a resonance between two 
disturbances (the sideband modes) set up by the nonlinear interactions of the 
disturbances with the first harmonic of the fundamental linear wave. 

The equilibrium states considered in this paper represent coherent plane waves. In 
predicting a sideband instability for both the pure wave and the mixed wave, we 
expect a loss of coherence for these equilibrium states. Thus, the relative phasing of 
the wavefronts and their amplitudes will become modified on the long length- and 
timescales used in this analysis. The actual spatial and temporal development can be 
described by integration of the evolution equations directly. We would expect 
behaviour similar to  the chaotic solutions described by Moon, Huerre & Redekopp 
(1983) for the Ginzburg-Landau equation and the intermittent behaviour described 
by Bretherton & Spiegel (1983). 

When Bi = 0, the evolution heat equation (3.11e) was ignored in our stability 
analysis of the nonlinear evolution equations since it decoupled from the others. This 
equation shows that for all of the equilibrium states considered in this study, the heat 
flux is out of or into the layer depending on whether the sign of the constant p is 
positive or negative. For the six relevant parameter sets considered in this work, p 
is always negative. Thus, there is always a net heat flux into the layer owing to  the 
nonlinear interactions of the unstable linear waves in these equilibrium states. 

When Bi $. 0, we examine the heat flux to the layer by considering the mean 
response of the liquid due to the nonlinear interactions. For Ri = 1 ,  we find that 
there is also a mean heat flux into the layer for all values of the Prandtl number 
considered. This result expresses the fact that  the energy needed to  sustain the 
nonlinear equilibrium state must be obtained from the environment by heat transfer 
through the top surface of the layer. 

6. Conclusions 
The stability of a liquid layer driven by the thermocapillary effect of a temperature 

gradient imposed on its upper free surface has been examined. The linear theory of 
SD has shown that two hydrothermal waves become unstable at the same time. One 
moves backward and to the right and the other moves backward and to the left. 
Their data has been supplemented in this work by further calculations for the critical 
Marangoni number, the critical wavenumber vector, and the critical frequency a t  the 
onset of the instability for a full range of Prandtl numbers and Bi = 1 .  

A weakly nonlinear, multiple-scale analysis was used to develop the set of 
nonlinear evolution equations (3.11) and (3.14) for this instability. These equations, 
a generalized version of the Ginzburg-Landau equation, couple the modal amplitudes 
of the unstable right and left linear waves, the associated pressure field, and a surface 
heat flux when Bi = 0. The stability of two sets of possible equilibrium states for 
these evolution equations was carefully examined. The first set is the pure-wave state 
consisting of either the right or the left linear wave. The second set is the mixed-wave 
state which is a combination of the both of the linear waves. It was found that a 
subset of the possible pure-wave states is stable to amplitude perturbations for all the 
parameter sets considered except for Bi = 1 and Pr = 0.001 or Pr = 0.01. For these 
two parameter sets, the mixed wave is stable to  amplitude perturbations, but it is 
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unstable for the others. Thus, we expect the system to develop into a pure-wave state 
except when Bi is near one and Pr < 0.01. I n  this parameter range, the system should 
develop into a mixed-wave state. 

Our analysis also shows that all of these equilibrium states exhibit a sideband 
instability. This suggests that they will lose their spatial coherence as they become 
modulated on both long space and times scales. The wavenumber vector and growth 
rate of the fastest growing sideband instability for one pure-wave case and one 
mixed-wave case are tabulated in tables 3 and 4. 

We expect the above results to serve as a rough guide to the behaviour of the 
thermocapillary instability that appears in the finite cylindrical geometry of present 
float-zone experiments. The experiments by Chun & Wuest (1979), Yreisser, Schwabe 
& Scharmann (1983), and Kamotani, Ostrach & Vargas (1984) all find an instability 
that propagates azimuthally around the cylinder. Such a motion is consistent with 
the obliquely travelling hydrothermal wave of the planar model or the spiralling 
hydrothermal wave found in the infinite-cylinder model by Xu & Davis (1984). In all 
of these experiments, a working fluid with a relatively large Prandtl number was 
used and so the results are consistent with the predictions of this nonlinear theory. 
However, these experiments are meant to model the instability in a float zone of 
liquid silicon. The Prandtl number of liquid silicon is 0.023 and since the Biot number 
of an actual zone is not close to zero, this analysis suggests that a mixed wave might 
be the preferred waveform for the instability. If this is true, the experiments may not 
be an appropriate model for a silicon float zone. We could do further calculations that 
precisely define the boundary between a pure wave and a mixed wave in (Pr,  Bi)- 
space, but these would not be very useful since, as we said earlier, our results can only 
serve as a rough guide to the actual experiments. 

The nonlinear interactions of the fundamental unstable linear wave produce a 
mean heat flux into the layer from the outside environment. This prediction could be 
used as a means of characterizing the onset of the instability in an experiment. It is 
analogous to the increase in the torque that signals the onset of Taylor vortices in 
concentric rotating cylinders. 

This work was supported by the National Science Foundation, Grant No. MSM- 
8451093. The author acknowledges a helpful discussion with Dr M .  R. E .  Proctor 
during the course of this work. The figures in this paper were drawn using the NCAR 
graphics system. 

Appendix A. Operator definitions 

follows : 
The differential operators and vectors used in system (3.2) are defined as 

F I, 31 194 
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B, = 

Here e, and e3 are unit vectors in the y- and z-directions respectively. 
After expanding the derivatives of x,  y and t that appear in the operators (A 1) 

with respect to the multiple scales defined by system (3.4) and substituting the 
expansion for M from (3.3) into the operator L, we obtain the following: 

L = L(0) + EL(,) + €2L(2) + . . . , 
B, = Bio) + eB$” + e2By) + . . . . 

(A 2a) 

(A 2 b )  

These operators are written as follows. 

9 ( A 3 )  

(A 4a) 

0 

0 0 

a a  
-+a-+el(ace3-) 
at ax 

v. 
- M,{Tz el + Tz e3>. 

a a a L(’) = -L  +-L,+-LL,, axl ar, a7, 

(A 4b) 

0 

0 0 
a 

0 2 - - M , @  ax 0 

L, = [ -M;Pr-’ 0 

,” R ] 0 - M ,  
, 

a a a 
L(2) = __ ax, L, +- ay, L,+- a7, L,+ v; L, + L,, (A 5 a )  

L,= 0 0 0 ,  [r: :: :I 
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i 0 

0 0 

0 - M c { i + a g }  

a a  
- L ! c P r - l  -+a-+el(aze3-) 

at ax 
0 

-Mc{T, el + 2Tz e3}. 

{ 

The boundary-condition operators are defined as follows : 

a a 
(e, - ) + e2 - (e2 . ) + e3(e3. ) 0 el 

a2 

a 
0 -+Bi 0 

B:") = 

a a 
ax, aYl 

Bil) = __ B +---By, 

a a 
ax2 aY2 

Bi2) = -B +--By, 

0 0 el 

0 0 e2 

The expansion of the nonlinear vector is given as follows: 

&"@) = {Pr-l(u(') .  V) v(1) 3 ,  0 u( ' ) .  V p ' } T ,  

Appendix B. Details of the multiple-scales problem 

the following sequence of problems to be solved: 
Using the expansions defined in (3.5) on the system of equations (3.2), we obtain 

a t  O(4, 

(B l a )  
B, F1) = 0 on z = 0,  (B 1 b )  

BP) ylcl) = 0 on = 1 ; (B l c )  

L(0)'Yl) = 0 

at O(e2), 

a t  O(e3),  
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The solution of the O(E)  problem was given in general terms in (3.6). The critical 
right wave in normal-mode form is 

Here, A = A ( X , ,  X, ,  Yl,  Y,, 71, 7.J is the complex amplitude of the normal-mode 
eigenfunction !@)(z), ki+) = (k , , ,  kcz )  is the critical wavenumber vector, o, is the 
frequency at the critical point, and C.C. is the complex conjugate of the first term. 
The critical left wave in normal-mode form is 

where B = B(X,,  X,, Y,, Yz, 71, T ~ )  and ki-) = (k, , ,  - k c 2 ) .  
The inhomogeneous boundary-value problems above are solved by first trans- 

ferring the inhomogeneous term in the boundary conditions to  the differential 
equations. This allows for an easier construction of the adjoint problem. 

The orthogonality condition is an inner product of two vectors, f and g say, and 
is defined as 

where V = J v d V  and 2 x / w ,  is the period of oscillation of the critical linear waves. 

Appendix C. Local geometry 
The geometry of the neutral surface and the frequency surface at the critical point 

is related to the linear coefficients of the evolution equations (3.11) and (3.14) by the 
following relations : 

i 3% c a2M 
cxx = -- - +--- 2 ah! 2M, ah! ’ 

. a20 c a2M 
Czy = -1- +-- 

ak, ak, M ,  ak, ah, 

In  (C la), w is evaluated with respect to a change in M ,  i.e. stepping off the neutral 
surface. Thus, i t  becomes complex due to the instability of the linear problem above 
the neutral surface. In  the rest of the equations, w is evaluated with respect to  a 
change in the wavenumber along the neutral surface. Thus, o is always real. 
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Appendix D. Alternative evolution equations 
As explained in $ 5 ,  when Bi = 0 we can set Q = 0 and derive an alternative set of 

evolution equations for this system. Here, the amplitude C of the temperature 
eigenfunction defined in ( 3 . 8 ~ )  evolves on the long length- and timescales. These 
equations are given as follows : 

(D 1 a )  

CT1 = ~~,Cx,+~~~Px1+~(IAJ2+IB(2), (D 1 4  

A , ~  + CF)-V,A = D+)A + c ~  + A [ ~ , , J A J ~ + ~ , ~ J B J ~ ]  + ~ c g ) .  V, P + A ~ L + ) .  V, C, 

Blz+~~-’ .V2B = L^‘- ’B+CB+B[C, , (B(~+C, , (A~~]+BC~-) .V,P+B~~-) .V,C,  (D I b )  

0 = $64 C+ &P + c;;). V,(A(2 + c g  . V,(B(2, (D 1 4  

(D 1 4  C C X  el f Ccy e2. 
where cyA = 

The coefficients c,, and cCy have not been calculated in this work 
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